Atom's FSB and Multi-Core Aspirations

All Intel Front Side Buses (FSBs) use Gunning Transistor Logic; it produces a good signal that's clearly capable of reaching incredibly high speeds, presently up to 1600MHz. But remember, Atom isn't about being the fastest, just about being fast enough - leaving some room for improvement here.

A GTL FSB uses on-die termination to deliver a very clean data eye each clock, necessary when operating at very high frequencies. Atom isn't the most data hungry processor in the world and thus it can get by with a 400MHz or 533MHz FSB, thus the GTL FSB ends up being overkill.


Dual Mode FSB 

Atom supports both a GTL or CMOS based FSB, the choice is made during manufacturing and a fuse is blown configuring the FSB for GTL or CMOS operation. When in CMOS mode on-die termination is turned off, the FSB runs at 1/2 the voltage of GTL mode and overall power is reduced. There are no performance tradeoffs to CMOS vs. GTL at the frequencies we're talking about here, the differences are only chipset compatibility and power.

Poulsbo can function in CMOS mode so you can expect Atom processors paired with the Poulsbo chipset to function in this lower power FSB mode. Atom won't be restricted to working with Poulsbo however, and the Diamondville core (Atom for cheap desktops and notebooks) is most likely Atom running in GTL mode so it can work with conventional desktop chipsets.

Atom is multi-core capable but obviously the first incarnation is a single-core design. The first manifestation of a multi-core Atom will be with a dual-core Diamondville due out later this year. Like previous dual-core CPU designs, Atom will place two cores behind a shared FSB. Once it gets an integrated memory controller, the multi-core designs will be more elegant.

Gridless Clock Distribution Poulsbo: An Unusually Revolutionary Chipset
Comments Locked

46 Comments

View All Comments

  • adntaylor - Tuesday, April 8, 2008 - link

    On that chart with price / power, you need to be clearer...

    For price, you show the combined price for CPU + Chipset. For power, you say just the CPU... so 0.65W for the CPU... but you're conveniently ignoring the >2W figure for the chipset!!! This absolutely flatters Intel wherever possible.

    AMD are just as misleading - they describe the Geode LX as "1W" which excludes the non-CPU core parts of the chip (which is an integrated CPU + GMCH)

    Just please be honest - the figures are out there in the Intel datasheets... it takes 10 minutes to check.
  • Clauzii - Friday, April 4, 2008 - link

    I still have a PowerVR 4MB addon card, runnung in tandem with a Rage128Pro. Quite a combination w. 15 FPS in Tombraider. Constant(!) 15FPS, that is..

    Amazing what they actually achieved back in 95!
  • Clauzii - Friday, April 4, 2008 - link

    Ooops!

    Totally misplaced that. Sorry.
  • wimaxltepro - Friday, April 4, 2008 - link

    The Atom represents a shift in processor architecture that is the most dramatic departure for Intel since introduction of x86 processors... the philosophy of how computing itself occurs from centralized processors to distributed processing based on an extension of the popular x86 instruction set.

    The Atom is not about the immediate prospects for the Atom or Nehalem products: we will likely see members of Intel's new product family be used in embedded applications in consumer products and in areas where specialized communications processors are more the rule. While not optimized for use in specific networking applications, the products capitalize on the wide range of support available in IT/Networking to develop common functions that leverage the low cost, low power/processing capability to be used as a common denominator for a wide range of applications.

    Intel has been built on the 'Wintel' architecture: massively integrated chips needed to handle the massively integrated operating systems and applications of Windows (and Apple) environments. The Atom allows migration and broadening out from that architectural motif to a very highly distributed architecture. So, the increased parallelism found in the internal chip architecture is enabling of changes in external system architectures and device applications that go well beyond the typical domain of Intel.. and right into the domain of 'personal wireless broadband' and SDWN, Smart Distributed Wireless broadband Network.

    The decisions about in-order vs. out of-order instruction streams, memory architecture, I/O architecture have been made in light of the broad vision for how computing, networking and, out of hand, how wireless enabled broadband networking including WiMAX will occur. This should be understood for what it represents as a shift in direction for Intel both in response to broad industry shifts and as a trend setting development.
  • jtleon - Friday, April 4, 2008 - link

    Thanks to all the flash player ads, etc., a mobile web device will continuously avoid switching to low power states. Thus one could argue that advertising will be carbon footprint enemy of the internet's future. This is already becoming the case for desktop/laptop machines.

    Without such continuous (arguably wasted) consumption of CPU power, then Intel's engineered power management might have a significant impact on the value of the Atom.

    Regards,
    jtleon
  • 0WaxMan0 - Friday, April 4, 2008 - link

    I am definatly much impressed and enthused by intels work here, the future looks interesting esp for those of us who like low power cross compatible computing products.

    However I have to point out that a low power modern x86 cpu has allready been done infact 4 years ago with AMD's Geode. While technically much weaker than the Atom and with out any where near the scalability (single core design etc.) the Geode has been available in the same TDP ranges for a good long while. Take a look here http://www.amdboard.com/geode.html">http://www.amdboard.com/geode.html for some old stuff.

    I do hope that the Intel name and hype makes more of an impact than AMD managed.
  • whycode - Thursday, April 3, 2008 - link

    Does the TDP quoted include the chipset? Or is that CPU only?
  • IntelUser2000 - Thursday, April 3, 2008 - link

    Anand, the Pentium M does not feature Macro Ops Fusion. Its Core 2 Duo that started Macro Ops Fusion.
  • Anand Lal Shimpi - Thursday, April 3, 2008 - link

    You're correct, I was referencing micro-op fusion. I've made the appropriate correction :)

    Take care,
    Anand
  • squito - Wednesday, April 2, 2008 - link

    Am I the only one shocked to see that Poulsbo is a 130nm part...

Log in

Don't have an account? Sign up now