Final Words

Expecting a sequel to be a reincarnation of the original is just setting yourself up for disappointment. A good sequel will be able to stand on its own, independent of whatever may have come before it. Nehalem is Intel's Dark Knight, it lacks the reinvention that made Conroe so incredible, but it continues what was started in 2006.

The Core i7's general purpose performance is solid, you're looking at a 5 - 10% increase in general application performance at the same clock speeds as Penryn. Where Nehalem really succeeds however is in anything involving video encoding or 3D rendering, the performance gains there are easily in the 20 - 40% range. Part of the performance boost here is due to Hyper Threading, but the on-die memory controller and architectural tweaks are just as responsible for driving Intel's performance through the roof.

The iTunes results do paint a downside to Nehalem, there are going to be some situations where Intel's new architecture doesn't offer a performance advantage over its predecessor. If you're not doing a lot of 3D rendering or video encoding work and you already have a Core 2 Quad, the upgrade to Nehalem won't be worth it. If you're still stuck on a Pentium 4 or something similarly slow by today's standards, a jump to Nehalem would be warranted.

Gaming performance is actually better than expected for Nehalem, there were enough cases where the new architecture pulled ahead despite its very small L2 cache that I wouldn't mind recommending it for gamers. In most GPU limited situations however you won't see any performance improvement, at least with today's GPUs, over Penryn.

While posting some very impressive performance gains, Nehalem is nearly as much about efficiency. Hyper Threading alone delivers a 0 - 30% increase in performance at a 0 - 15% increase in power consumption; the problem is that Nehalem's efficiency is only as good as its performance and in those areas where Nehalem can't outperform Penryn, its power efficiency suffers.

I can't help but wonder if what we saw with the QX9770 is indicative of a larger Nehalem advantage, if Penryn's power consumption truly does increase dramatically as clock speed goes up, while Nehalem is able to reel it back in. If that is indeed the case, then Nehalem is even more important for the future of the Core microarchitecture than I originally thought. You could consider it the reverse-Prescott in that case, if its design choices are meant to keep power consumption under control as clock speed ramps up.

It seems odd debating over the usefulness of a processor that can easily offer a 20 - 40% increase in performance, the issue is that the advantages are very specific in their nature. While Conroe reset the entire board, Nehalem is very targeted in where it improves performance the most. That is one benefit of the tick-tock model however, if Intel was too aggressive (or conservative?) with this design then it only needs to last two years before it's replaced with something else. I am guessing that once Intel moves to 32nm however, L2 cache sizes will increase once more and perhaps bring greater performance to all applications.

Quite possibly the biggest threat to Nehalem is that, even at the low end, $284 is a good amount for a microprocessor these days. You can now purchase AMD's entire product line for less than $180 and the cost of entry to a Q9550 is going to be lower, at least at the start, than a Core i7 product. There's no denying that the Core i7 is the fastest thing to close out 2008, but you may find that it's not the most efficient use of money. The first X58 motherboards aren't going to be cheap and you're stuck using more expensive DDR3 memory. If you're running applications where Nehalem shines (e.g. video encoding, 3D rendering) then the ticket price is likely worth it, if you're not then the ~10% general performance improvement won't make financial sense.

It also remains to be seen what will happen to the Nehalem market once Intel introduces the LGA-1156 version next year for lower price points. By introducing a $284 part this early Intel appears to be courting the Q6600/Q9450/Q9550 buyers to the LGA-1366 platform, which would mean that the two-channel Nehalems are strictly value parts and perhaps there won't be much fragmentation in the market as a result.

Intel has two thirds of the perfect trifecta here. Nehalem brings the ability to work on more threads at a time, redefining video encoding and 3D rendering performance, its SSDs shook the storage world, that just leaves Larrabee...

Gaming Performance
Comments Locked

73 Comments

View All Comments

  • npp - Tuesday, November 4, 2008 - link

    Well, the funny thing is THG got it all messed up, again - they posted a large "CRIPPLED OVERCKLOCKING" article yesterday, and today I saw a kind of apology from them - they seem to have overlooked a simple BIOS switch that prevents the load through the CPU from rising above 100A. Having a month to prepare the launch article, they didn't even bother to tweak the BIOS a bit. That's why I'm not taking their articles seriously, not because they are biased towards Intel ot AMD - they are simply not up to the standars (especially those here @anandtech).
  • gvaley - Tuesday, November 4, 2008 - link

    Now give us those 64-bit benchmarks. We already knew that Core i7 will be faster than Core 2, we even knew how much faster.
    Now, it was expected that 64-bit performance will be better on Core i7 that on Core 2. Is that true? Draw a parallel between the following:

    Performance jump from 32- to 64-bit on Core 2
    vs.
    Performance jump from 32- to 64-bit on Core i7
    vs.
    Performance jump from 32- to 64-bit on Phenom
  • badboy4dee - Tuesday, November 4, 2008 - link

    and what's those numbers on the charts there? Are they frames per second? high is better then if thats what they are. Charts need more detail or explanation to them dude!

    TSM
  • MarchTheMonth - Tuesday, November 4, 2008 - link

    I don't believe I saw this anywhere else, but the spots for the cooler on the Mobo, they the same as like the LGA 775, i.e. can we use (non-Intel) coolers that exist now for the new socket?
  • marc1000 - Tuesday, November 4, 2008 - link

    no, the new socket is different. the holes are 80mm far from each other, on socket 775 it was 72mm away.
  • Agitated - Tuesday, November 4, 2008 - link

    Any info on whether these parts provide an improvement on virtualized workloads or maybe what the various vm companies have planned for optimizing their current software for nehalem?
  • yyrkoon - Tuesday, November 4, 2008 - link

    Either I am not reading things correctly, or the 130W TDP does not look promising for the end user such as myself that requires/wants a low powered high performance CPU.

    The future in my book is using less power, not more, and Intel does not right now seem to be going in this direction. To top things off, the performance increase does not seem to be enough to justify this power increase.

    Being completely off grid(100% solar / wind power), there seem to be very few options . . . I would like to see this change. Right now as it stands, sticking with the older architecture seems to make more sense.
  • 3DoubleD - Tuesday, November 4, 2008 - link

    130W TDP isn't much worse for previous generations of quad core processors which were ~100W TDP. Also, TDP isn't a measure of power usage, but of the required thermal dissipation of a system to maintain an operating temperature below an set value (eg. Tjmax). So if Tjmax is lower for i7 processors than it is for past quad cores, it may use the same amount of power, but have a higher TDP requirement. The article indicates that power draw has increased, but usually with a large increase in performance. Page 9 of the article has determined that this chip has a greater performance/watt than its predecessors by a significant margin.

    If you are looking for something that is extremely low power, you shouldn't be looking at a quad core processor. Go buy a laptop (or an EeePC-type laptop with an Atom processor). Intel has kept true to its promise of 2% performance increase for every 1% power increase (eg. a higher performance per watt value).

    Also, you would probably save more power overall if you just hibernate your computer when you aren't using it.
  • Comdrpopnfresh - Monday, November 3, 2008 - link

    Do differing cores have access to another's L2? Is it directly, through QPI, or through L3?
    Also, is the L2 inclusive in the L3; does the L3 contain the L2 data?
  • xipo - Monday, November 3, 2008 - link

    I know games are not the strong area of nehalem, but there are 2 games i'd like to see tested. Unreal T. 3 and Half Life 2 E2.. just to know how does nehalem handles those 2 engines ;D

Log in

Don't have an account? Sign up now