Whole-Drive Fill

This test starts with a freshly-erased drive and fills it with 128kB sequential writes at queue depth 32, recording the write speed for each 1GB segment. This test is not representative of any ordinary client/consumer usage pattern, but it does allow us to observe transitions in the drive's behavior as it fills up. This can allow us to estimate the size of any SLC write cache, and get a sense for how much performance remains on the rare occasions where real-world usage keeps writing data after filling the cache.

During a sustained write, the Optane cache on the Intel Optane Memory H10 doesn't change the situation much from how the QLC-only Intel 660p behaves—the Optane cache on its own is only good for about 350MB/s. The SLC write cache on the NAND side is a more important factor that helps sustain high write speed far beyond the 32GB size of the Optane cache. But eventually, all the caches fill up and the very slow write speed of raw QLC takes over.

Sustained 128kB Sequential Write (Power Efficiency)
Average Throughput for last 16 GB Overall Average Throughput

The overall average write speed when completely filling the Optane Memory H10 is unsurprisingly lower than any of the other drives in this batch. The 1TB Intel 660p was already a bit slower than a 7200RPM hard drive, and our H10 sample has half as much QLC to work with.

Working Set Size

The Optane cache on the H10 is 32GB, but when testing random reads it appears to only be good for about 6-8GB working sets before the cache starts thrashing and performance drops down to roughly what a QLC-only drive can offer. It appears that Intel may be reserving a large portion of the Optane cache to serve as a write buffer, and this might be detrimental to the most read-intensive workloads.

Application Benchmarks: SYSmark 2018 & PCMark 10 AnandTech Storage Bench - The Destroyer
Comments Locked

60 Comments

View All Comments

  • yankeeDDL - Monday, April 22, 2019 - link

    Is it me or, generally speaking, it is noticeably slower than the 970 Evo?
  • DanNeely - Monday, April 22, 2019 - link

    The 970 can make use of 4 lanes, with only 2 effective lanes in most scenarios any good x4 drive is going to be able to smoke the H10.
  • yankeeDDL - Monday, April 22, 2019 - link

    I still remember that Optane should be 1000x faster and 1000x cheaper. It seems that it is faster, albeit by a much lower factor ... then why hamper it with a slower bus? I mean, I came to read the review thinking that it could be a nice upgrade, and then I see it beaten handily by the 970 Evo. What's the point of such device? It is clearly more complex, so I doubt it'll be cheaper than the 970 Evo...
  • Alexvrb - Monday, April 22, 2019 - link

    Wait, did they say it would be cheaper? I don't remember that. I know they thought it would be a lot faster than it is... to be fair they seemed to be making projections like NAND based solutions wouldn't speed up at all in years LOL.

    It can be a lot faster in certain configs (the high end PCIe add-on cards, for example) but it's insanely expensive. Even then it's mainly faster for low QDs...
  • kgardas - Tuesday, April 23, 2019 - link

    Yes, but just in comparison with DRAM prices. E.g. NVDIMM of big size cheaper than DIMM of big size.
  • Irata - Tuesday, April 23, 2019 - link

    It was supposed to be 1000x faster and have 1000x the endurance of NAND as per Intel's official 2016 slides.

    It may be slightly off on those promises - would have loved for the article to include the slide with Intel's original claims.

    Price wasn't mentioned.
  • yankeeDDL - Tuesday, April 23, 2019 - link

    You're right. They said 1000x faster, 1000x endurance and 10x denser, but they did not say cheaper, although, the 10x denser somewhat implies it (https://www.micron.com/~/media/documents/products/... Still, this drive is not faster, nor it has significantly higher endurance. Let's see if it is any cheaper.
  • Valantar - Tuesday, April 23, 2019 - link

    Denser than DRAM, not NAND. Speed claims are against NAND, price/density claims against DRAM - where they might not be 1/10th the price, but definitely cheaper. The entire argument for 3D Xpoint is "faster than NAND, cheaper than DRAM (while persistent and closer to the former than the latter in capacity)", after all.
  • CheapSushi - Wednesday, April 24, 2019 - link

    I think this is why there's still negative impressions around 3D Xpoint. Too many people still don't understand it or confuse the information given.
  • cb88 - Friday, May 17, 2019 - link

    Optane itself is *vastly* faster than this... on an NVDIMM it rivals DDR4 with latencies in hundreds of ns instead of micro or milliseconds. And bandwidth basically on par with DDR4.

    I think it's some marketing BS that they don't use 4x PCIe on thier M.2 cards .... perhaps trying to avoid server guys buying them up cheap and putting them on quad m.2 to PCIe adapters.

Log in

Don't have an account? Sign up now